TIC TAC TOE

pygame, sys
numpy np

pygame.init()

WIDTH - 600

HEIGHT - 600
LINE_WIDTH - 15
WIN_LINE_WIDTH - 15
BOARD_ROWS - 3
BOARD_COLS
SQUARE_SIZE - 200
CIRCLE_RADIUS - 60
CIRCLE_WIDTH - 15
CROSS_WIDTH - 25
SPACE - 55

RED = (255, 0, 0)

BG_COLOR = (28, 170, 156)
LINE_COLOR = (23, 145, 135)
CIRCLE_COLOR - (239, 231, 200)
CROSS_COLOR - (66, 66, 66)

screen = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption('TIC TAC TOE')
screen.fill(BG_COLOR)

board = np.zeros((BOARD_ROWS, BOARD_COLS))

def draw_lines():

pygame.draw. line(screen, LINE_COLOR, (@, SQUARE_SIZE), (WIDTH, SQUARE_SIZE)
, LINE_WIDTH)

pygame.draw. line(screen, LINE_COLOR, (@, 2 * SQUARE_SIZE), (WIDTH, 2
SQUARE_SIZE), LINE_WIDTH)

pygame.draw. line(screen, LINE_COLOR, (SQUARE_SIZE, 0), (SQUARE_SIZE, HEIGHT
), LINE_WIDTH)

pygame.draw. line(screen, LINE_COLOR, (2 * SQUARE_SIZE, 0), (2 * SQUARE_SIZE
, HEIGHT), LINE_WIDTH)

def draw_figures():
row range (BOARD_ROWS) :
col range (BOARD_COLS) :
board[row] [col] ilg
pygame.draw.circle(screen, CIRCLE_COLOR, (int(col
SQUARE_SIZE SQUARE_SIZE//2), int(row SQUARE_SIZE
SQUARE_SIZE//2)), CIRCLE_RADIUS, CIRCLE_WIDTH)
board[row] [col] 7F
pygame.draw. line(screen, CROSS_COLOR, (col * SQUARE_SIZE
SPACE, row SQUARE_SIZE SQUARE_SIZE SPACE), (col
SQUARE_SIZE SQUARE_SIZE SPACE, row SQUARE_SIZE
), CROSS_WIDTH)
pygame.draw. line(screen, CROSS_COLOR, (col * SQUARE_SIZE
SPACE, row SQUARE_SIZE SPACE), (col SQUARE_SIZE
SQUARE_SIZE SPACE, row SQUARE_SIZE SQUARE_SIZE SPACE
), CROSS_WIDTH)

mark_square(row, col, player):
board[row] [col]l = player

available_square(row, col):
board[row] [col] 0

is_board_full():
row range (BOARD_ROWS) :
col range (BOARD_COLS) :
board[row] [col] 0:
False

True
check_win(player):

col range (BOARD_COLS) :
board[0] [col] player board[1] [col] player board[2] [col]
player:
draw_vertical_winning_line(col, player)
True

row range (BOARD_ROWS) :
board[row] [0] player board[row] [1] player board[row] [2]
player:
draw_horizontal_winning_line(row, player)
True

row range (BOARD_ROWS) :
board[row] [0] player board[row] [1] player board[row] [2]
player:
draw_horizontal_winning_line(row, player)
True

board[2] [2] player board[1] [1] player board[0] [2] player
draw_asc_diagonal(player)
True

board[0] [0] player board[1] [1] player board[2] [2] player

draw_desc_diagonal(player)
True

False

def draw_vertical_winning_line(col, player):
posX = col SQUARE_SIZE SQUARE_SIZE//2

player g

color = CIRCLE_COLOR
player 2

color CROSS_COLOR

pygame.draw. line(screen, color, (posX, 15), (posX, HEIGHT - 15), LINE_WIDTH
)

def draw_horizontal_winning_1line(row, player):
posY row * SQUARE_SIZE SQUARE_SIZE//2

player ie

color = CIRCLE_COLOR
player 2e

color CROSS_COLOR

pygame.draw. line(screen, color, (15, posY), (WIDTH - 15, posY),
WIN_LINE_WIDTH)

def draw_asc_diagonal(player):
player g
color = CIRCLE_COLOR
player 2
color CROSS_COLOR

pygame.draw. line(screen, color, (15, HEIGHT - 15), (WIDTH - 15, 15),
WIN_LINE_WIDTH)

def draw_desc_diagonal(player):
player iE
color = CIRCLE_COLOR
player 2¢
color = CROSS_COLOR

pygame.draw. line(screen, color, (15, 15), (WIDTH - 15, HEIGHT
WIN_LINE_WIDTH)

def restart():
screen.fill(BG_COLOR)
draw_lines()
row range (BOARD_ROWS) :
col range (BOARD_COLS) :
board[row] [col] 0

draw_lines()

player = 1
game_over False

True:
event pygame.event.get():
event.type pygame.QUIT:
sys.exit()

event.type pygame.MOUSEBUTTONDOWN game_over:

mouseX = event.pos[0]
mouseY = event.pos[1]

clicked_row = int(mouseY SQUARE_SIZE)
clicked_col = int(mouseX SQUARE_SIZE)

available_square(clicked_row, clicked_col):

mark_square(clicked_row, clicked_col, player)
check_win(player):
game_over = True

player = player = 2 + 1

draw_figures()

event.type pygame.KEYDOWN :
event.key pygame.K_r:
restart()

def restart():
screen.fill(BG_COLOR)
draw_lines()
row range (BOARD_ROWS) :
col range (BOARD_COLS) :
board[row] [col] 0

draw_lines()

player = 1
game_over False

True:
event pygame.event.get():
event.type pygame.QUIT:
sys.exit()

event.type pygame.MOUSEBUTTONDOWN game_over:

mouseX = event.pos[0]
mouseY = event.pos[1]

clicked_row = int(mouseY SQUARE_SIZE)
clicked_col = int(mouseX SQUARE_SIZE)

available_square(clicked_row, clicked_col):

mark_square(clicked_row, clicked_col, player)
check_win(player):
game_over = True

player = player = 2 + 1

draw_figures()

event.type pygame.KEYDOWN :
event.key pygame.K_r:
restart()
player = 1
game_over False

pygame.display.update()

